
Abstract. A singularity excluded approximate expansion
(SEAX) scheme, which can be considered as one be-
tween Breit-Pauli expansion and RA expansion schemes,
is proposed to expand the total energy of 4-component
relativistic density functional theory. The one-electron
equation can be derived variationally from the approx-
imate total energy expression. The Hamiltonian of the
one-electron equation is bounded from below and can be
dealt with variationally, and the gauge dependency error
in the ZORA method is essentially eliminated. It is easier
to solve the SEAX equation than the IORA equation.
The results related to the valence orbitals by solving the
scalar SEAX equation agree very well with those by
the scalar ZORA ESA method, and the results related to
the inner-shell electrons of heavy elements by the two
component SEAX calculations agree quite well with
those by the 4-component relativistic density functional
calculations.
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Introduction

It has been recognized that relativistic effects influence
significantly the properties of heavy elements [1]; thus,
the relativistic effects have to be considered in the
theoretical study of compounds containing heavy ele-
ments, for which the Dirac equation has to be solved
instead of solving the Schroedinger equation. Although
the first principle methods and programs for solving the
Dirac equation have been developed, only quite small
molecules have been studied with these methods because
the related calculations are very time-consuming [2–6].
To surmount this obstacle people have sought approx-

imate approaches that incorporate the major relativistic
effects, but which demand much less computational
effort. Several such approaches have been proposed [7–
18]. The approaches based on regular approximation
(RA) such as ZORA and IORA, etc. [13, 14, 19] are
attractive for the fact that the effective Hamiltonian of
the one-electron equations is simple, bounded from
below and variationally stable [20, 21]. Their computa-
tional effort is only slightly larger than the correspondent
non-relativistic calculations, while the calculated results
are satisfactory [22]. There are three problems in RA
schemes arising from the fact that the potential term is
involved in the denominator of the kinetic energy
operator. The first is that the ZORA total energy is not
stationary with respect to orbital variations. The second
is that the ZORA equation is not gauge invariant which
leads to errors in energy difference calculations. The third
is that the kinetic energy matrix needs evaluating in each
cycle of iteration leading to increase of computational
efforts. To circumvent the third problem Philipsen PHT
et al. [23] proposed to use the sum of atomic potentials to
approximate the potential term in the kinetic energy
operator (SAPA). When more accurate potential in the
kinetic energy operator is required they adopted better-
fixed potential, which is close to the molecular potential
but does not depend on the molecular orbitals. It is found
that in combined use of the scaled (SR) ZORA method
and the electrostatic shift approximation (ESA), the error
in the energy difference calculations due to the gauge
dependency in ZORA method can be reduced to be
tolerable [14]. Van Wüllen [24] pointed out that using the
superposition of atomic potentials as the approximate
potential in the kinetic energy operator is unsuitable
because the exchange-correlation potential is not linear
in the electron density, and that there are some points
unreasonable in the ZORA ESA method. He proposed
the ZORA (MP) [24] method, in which the potential
produced by the superposition of the spherical model
atomic charge densities is used as the approximate
potential in the kinetic energy operator, and claimed
that all three problems above mentioned were satisfac-
torily solved. However, van Lenthe et al. [25] pointed out
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that a small gauge dependence problem still exists in the
ZORA (MP) method and suggested that a possible
approach to solve the gauge dependence problem would
be to construct a model potential such that the electro-
static shift is zero for an atom due to other atoms in the
regions. In the previous paper we proposed the ZORA
(SLF) scheme [26] in which a space-limited potential
function is used in the ZORA kinetic energy operator. It
was found that the gauge dependence errors in the
calculated bond lengths and binding energies by ZORA
(SLF) method are reduced to comparable with those of
ZORA ESA method. However, the calculated molecular
properties in connection with the deeper inner electrons
by the ZORA (SLF) method is not quite good, while it is
needed sometimes to study the subjects related to the
deeper inner shells of heavy elements. The IORA method
can give quite accurate results even for the properties
related to the inner shells of very heavy atoms. But there
are some problems left unsolved, particularly, the one-
electron equation is not variationally connected to the
molecular total energy, which may result in some
difficulty in the analytical gradient calculations, and the
potential term in the kinetic energy operator leads to
computational trouble. The IORA method has not yet
been used in the calculations of molecules to the best of
our knowledge. In the present paper, a singularity
excluded approximate expansion (SEAX) scheme, which
can be considered as one between the Breit-Pauli
expansion and the RA expansion schemes, is proposed
to expand the total energy of the 4-component relativistic
density functional theory. An approximate expression
for the total energy can be obtained by use of the SEAX
scheme, from which the one-electron equation can be
variationally derived. Less computational efforts are
needed for solving the SEAX one-electron equation than
the IORA equation. In the calculations of a series of
molecules with the SEAX method it is found that the
gauge dependence error can be essentially eliminated and
the calculated results are quite satisfactory even for the
properties related to the deeper inner shell electrons.
Firstly, the basic equation will be derived and its main
properties will be discussed. Then, the calculated results
for some atoms and molecules will be presented and
compared with those by other approximate methods and
the 4-component relativistic density functional (DF)
method. Finally, we present some concluding remarks.

Basic equation

The total energy of molecules or atoms in density
functional theory can be written as

E ¼
X
i

wih jT̂T wij i þ
X
i

wih jVN wij i

þ 1

2

ZZ
qð~rr1Þqð~rr2Þ
~rr1 �~rr2j j d3r1d3r2 þ Exc½q
 ð1Þ

where T̂T is the kinetic operator, VN is the nuclear
potential, EXC is the exchange-correlation energy, and
qð~rrÞ ¼

P
i wi~rrjh i ~rrjwih iis the electronic density. In the

relativistic density functional calculations, the relativistic
correction to EXC is usually neglected because it does not

exhibit significant effects on valence electronic properties
and the non-relativistic formulas for EXC is used
in practical calculations [13, 19]. In the 4-component rel-

ativistic density functional theory, T̂T ¼ 0 c~rr �~pp
c~rr �~pp �2c2

� �
and wi satisfies the Dirac-Kohn-Sham equation:

0 c~rr �~pp
c~rr �~pp �2c2

� �
þ V

� �
wi ¼ eiwi ð2Þ

where V ¼ VN þ VCoul þ VXC ; VN ¼
P

A V
A
N is the nuclear

attractive potential, VCoul ¼
R qð~rr2Þ

~rr�~rr2j j d
3r2 is the Coulomb

potential, VXC ¼ dEXC
dq is the exchange-correlation poten-

tial, the Breit term is neglected as usual. {wi} are 4-
component wavefunctions and each can be written as

wi ¼
/L
i

/ S
i

� �
; /L

i and /S
i are the large and small compo-

nents respectively and they are both 2-component
wavefunctions. From Eq. (2) it can be obtained that

/S
i ¼ c

2c2 � V þ ei
~rr �~pp/L

i ð3Þ

By use of Eq. (3) and wi ¼
/L
i

/ S
i

� �
, Eq. (1) can be

written as
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The orthonormal conditions for /L

i

� �
are
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ð2c2�V þ ejÞð2c2�V þ eiÞ
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/L
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�
¼ dij
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The term 1

2c2�Vþei
in Eqs. (4), (5), and (6) can be ex-

panded in the following way:

1

2c2 � V þ ei
¼ 1

2c2 � V0 � DV þ ei

¼ 1

ð2c2 � V0Þ
1 þ ei � DV

2c2 � V0

� ��1

¼
X1
k¼0

DV � eið Þk

2c2 � V 0ð Þkþ1
ð7Þ
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where DV ¼ V ) V0. It should be noted that V0 need not
be a model or effective potential; it is just a function used
to exclude the Coulomb singularities in the nuclear
positions. If V0 ¼ V is assumed, Eq. (7) becomes the
expansion formula used in the regular approximation,
which leads to gauge dependency difficulty in the ZORA
method [13] and makes it difficult to derive the one-
electron equation from the total energy expression.
When V0 ¼ 0, Eq. (7) is equivalent to the expansion
scheme used to obtain the Breit-Pauli Hamiltonian, in
which there are singularities in the nuclear positions and
the expansion is invalid in the regions very near the
nuclei. Our choice is to construct the V0 in Eq. (7)
appropriately to exclude the singularities appearing in
the Breit-Pauli expansion. The V0 should be close to the
nuclear potential in regions near the nuclei for removing
the nuclear potential singularity as far as possible, and it
should be very near zero in other regions for reducing
the gauge dependent errors. Concretely, it is taken as a
truncated nuclear potential:

V0 ¼
X
A

V A
0 ; V A

0 ¼ V A
N 1 þ exp a r � r A0

� �� �� ��1 ð8Þ

where V A
N is the potential of nucleus A, rA0 is a given small

value proper to nucleus A, and a is a large enough
positive number. Obviously the aforementioned require-
ments for V0 are satisfied. Furthermore, the derivative of
V0 given by Eq. (8) with respect to coordinates is simple,
which facilitate the evaluation of analytical energy
gradients. It is found in calculation practices that the
calculated results are insensitive to the parameters r A0
and a to a certain extent. Expanding Eqs. (4), (5), and
(6) by use of Eq. (7) and neglecting the Oðð2c2 � V0Þ�3Þ
and higher degree terms, the total energy can be

approximately written as
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and the electronic density is
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The orthonormal conditions become
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Making E(1) stationary respect to /L
i ’s variation with

the constraint Eq. (11) the following one-electron
equation can be obtained:�
~rr �~pp c2

2c2 � V0
~rr �~pp �~rr �~pp c2V0

ð2c2 � V0Þ2
~rr �~pp

þ~rr �~pp c2 V

ð2c2 � V0Þ2
~rr �~pp þ V

�
/L
i

¼ ei

�
1 þ~rr �~pp c2

ð2c2 � V0Þ2
~rr �~pp

�
/L
i ð12Þ

The electronic density used to calculate V is obtained
from Eq. (10). Equation (12) is the basic equation of the
SEAX method. It can be seen that Eq. (12) is just the
IORA equation when V0 ¼ V, but in that case Eq. (12)
cannot be derived variationally from the total energy
expression because V is involved in the denominators
and related to /L

i

� �
. When V0 is taken as zero and

Eq. (12) is further transformed to eliminate the metric
term in the r.h.s., one can obtain the Breit-Pauli Ham-
iltonian. In the present paper, V0 is constructed as
mentioned above and Eq. (12) is not transformed fur-
ther. The calculations are carried out directly using
Eq. (12). Since the kinetic energy matrix and the metric
matrix need evaluating only once, the computational
effort for solving Eq. (12) is less than that for solving
the IORA equation. Furthermore, based on Eq. (9) the
expression of the analytical energy gradient can be
derived and implemented without difficulty. Obviously
if the Oðð2c2 � V0Þ�2Þ term is also neglected, Eq. (12)

becomes

~rr �~pp c2

2c2 � V0
~rr �~pp þ V

� �
/L
i ¼ ei/

L
i ð13Þ

which is similar to the ZORA (SLF) equation. It is the
non-relativistic Kohn-Sham equation if V0 ¼ 0. It be-
comes the ZORA (MP) equation when V0 is taken as
van Wüllen’s model potential, but the gauge dependence
error cannot be completely eliminated. When V0 ¼ V,
Eq. (13) is the ZORA equation, but again in that case it
cannot be derived variationally from the total energy
expression.

Following Refs. [19–21], it can be shown that the
Hamiltonian in Eq. (12) is bounded from below and is
variationally stable. As pointed out by Kutzelnigg [27]
the RA Hamiltonian are not bounded from below by the
exact one-electron energy, rather by an energy below it,
and the deviation is of O(c)4). The SEAX Hamiltonian
would have a similar behavior. In fact, the 4-component
relativistic methods with kinetic balance bases [28, 29] to
avoid variational collapse bear the same problem. Since
the deviation is quite small, the calculated one-electron
energies from Eq. (12) can still be considered as a good
approximation to the exact ones.

It is worthwhile to note that the SEAX approach
can be considered as an approximate 4-component
relativistic density functional method for the positive
energy states with the constraint that the relation
between the small and large components is fixed by an
approximate formula which is independent of energy
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and wavefunctions and satisfies the kinetic balance
condition. Thus, only the Dirac-Kohn-Sham equation
for the large components (Eq. (12)) needs solving and it
can be done so variationally. Therefore, the computa-
tional efforts of the SEAX method are reduced greatly
relative to the method to solve the 4-component Dirac-
Kohn-Sham equation. Furthermore, like the IORA
method, the evaluation of molecular properties is simple
in the SEAX scheme due to no need of picture changes
[30, 31].

Obviously, variation of V0 influences both E(1) and
the eigenvalues (ei) in Eq. (12). But, it can be shown that
when V0 changes to V0 + dV0, the changes of electronic
density, the Coulomb, and exchange-correlation poten-
tials, E (1) and eis are all of O(c)4); thus, these quantities
are not sensitive to the variation of V0, and the calcu-
lated result of the SEAX method is insensitive to the
choice of the parameters to define V0.

The SEAX method is also not gauge invariant as in
the ZORA and IORA methods since V and V0 should
have the same gauge to make Eq. (7) of meaning while
V0 is in the denominator. However, the gauge depen-
dency error in the calculation of energy differences with
the SEAX method is negligible. For example, in the
calculation of molecular binding energies, the V0 values
are different for the molecule and its constituent atoms;
the gauge dependency error dEb can be written as:

dEb ¼
X
A

X
i

/A
i

	 

~rr �~pp 2c2ðV A
N � V0ÞDV0

ð2c2 � V0Þ3
~rr �~pp /A

i



 �
ð14Þ

where /A
i is the large component of orbital i of atom A,

DV0 ¼ V A
0 � V0 ¼

P
B 6¼A ð�V B

0 Þ for atom A. It can be

seen that dEb is of O(c)4). Furthermore, with the
appropriate construction of V0 in the present paper,

V A
N � V0 � 0 in the region near nucleus A, while in other

regions DV0 � 0 except for the small spaces around
the nuclei other than nucleus A in the molecule. The
contribution from these small spaces to the integral
related to atom A is very small. Then dEb must be a very
small quantity and can be negligible. Thus, the gauge
dependency trouble in the ZORA method is essentially
eliminated in the SEAX method.

The scalar SEAX equation can be obtained by sepa-
rating the terms containing spin operator from Eq. (12).�
~pp

c2

2c2 � V0
~pp �~pp

c2 V0

ð2c2 � V0Þ2
~pp

þ~pp
c2 V

ð2c2 � V0Þ2
~pp þ V

�
wi ¼ ei

�
1 þ~pp

c2

ð2c2 � V0Þ2
~pp
�
wi

(15)

And the electronic density in this case can be written
as

qð~rrÞ ¼
X
i

wi~rrjh i ~rr wijh i þ wih j~pp c2

ð2c2 � V0Þ2
~rrj i ~rrh j~pp wij i

( )

ð16Þ
The simplified scheme for solving the ZORA equa-

tion [32] can also be used in the SEAX method, that is,

Eq. (15) is solved first, then the spin-orbit interaction
terms are involved in the Hamiltonian and the iteration
is continued to convergence to obtain the solution of
Eq. (12).

The computational efforts will increase considerably
if the second term in the r.h.s of Eqs. (10) or (16) is taken
into account in calculating the gradient correction of
exchange-correlation energies because the second order
differentials of basis sets are required. This term is of
O(c)2); its contribution to the electron density gradient is
quite small and its contribution to the non-local cor-
rection of exchange-correlation energies must be quite
small too. With this fact in mind the contribution of the
second term in the r.h.s of Eqs. (10) or (16) to the non-
local correction of exchange-correlation energies can be
neglected in practical calculations.

Results and discussions

Calculated result for atoms

The orbital energies of U and Pu are calculated with
Eq. (12). The V0 is taken as a truncated nuclear potential
as mentioned above.

V A
0 ¼ V A

N

1 þ exp½aðr � r0Þ

ð17Þ

with a ¼ 300 and r0 ¼ 0.1 a.u. It has been shown that
the calculated result is insensitive to the values of
a and r0. Equation (12) is solved by the basis set
expansion method, the universal Gaussian basis set
[33] is used, and the Xa exchange-correlation potential
with a ¼ 0.7 is adopted. All the matrix elements are
calculated with numerical integration methods and the
Gauss-Chebeshev quadrature is used. The calculated
orbital energies are listed in Tables 1 and 2. The
calculated results of Pu by the ZORA and IORA
methods with the same computational details and by
numerically solving the 4-component Dirac-Slater
equation as well as the relevant results of U in the
references are also listed in the tables for comparison.
It can be seen that ZORA, IORA, SEAX, and Dirac-
Slater methods give very similar valence orbital
energies. The orbital energies by the SEAX method
are all lower than the correspondent eigenvalues of the
Dirac-Slater equation within numerical calculation
errors, showing that the SEAX Hamiltonian is bound-
ed from below by an energy below the exact one, the
deeper the orbitals, the larger the deviation. However,
the deviation is small, except for the 1s orbital; the
largest deviation is only about 0.1% and it becomes
negligible from the 3s orbital outwards. ZORA and
IORA methods show the similar behavior, and the
ZORA method has the largest deviation. The agree-
ment between the results by the IORA method and
from the Dirac-Slater calculation is better, though
there is no significant difference between the results
from the IORA and SEAX methods except for the 1s
orbital. The inner orbital energies from the SEAX
method are obviously in better agreement with those

56



from the 4-component Dirac-Slater calculations as
compared with the result from the ZORA method.

Calculated result for molecules

In the molecular calculations, V0 takes the form of
Eq. (8) and V A

N of atom A is chosen as that in Eq. (17).
Equation (12) or (15) for atoms in average configura-
tions is first solved with universal Gaussian basis sets to
obtain atomic orbitals. The atomic orbitals are taken as
basis sets extended with two STOs and one polarization
functions for valence shells as in Ref. [32]. The local
density approximation (LDA) with VWN correlation
functional [34] is employed, and the gradient corrections
for exchange due to Becke [35] and for correlation due to
Perdew and Wang [36] are adopted. All matrix elements
are evaluated by numerical integrations. The Becke
partitioning scheme [37] is used for multicenter integrals.
The Gauss-Chebeshev quadrature is used for radial
integrals and Gauss-Legendre quadrature is used for
angular integrals. The number of grid points is
(100 · 80) for heavy elements and (80 · 60) for light
elements. In bond energy calculations, the ground state
energies of the constituent atoms are calculated using the
same computational condition as that for the molecular
calculation. The spin-polarized scheme is used for open
shell atoms in scalar relativistic calculations, and the
moment-polarized scheme [38, 39] is used in 2-compo-

nent calculations. The calculated bond energies, bond
lengths, and vibration frequencies by use of Eqs. (12)
and (15) under LDA or GGA for a series of 2-atom
molecules with closed shells are listed in Tables 3–6. The
experimental and ZORA results are also listed in these
tables for comparison. In ZORA calculations, the model
potential is used in the kinetic operator [25, 32] and ESA
[14] is adopted to eliminate the gauge dependency error.
The results by 4-component relativistic DF calculations
with BDF program [6] are also listed for comparison
with the results of the 2-component SEAX calculations.
The bond lengths, bond energies, and vibration frequen-
cies are mainly determined by valence electrons; thus,
the calculated results of these molecular constants are
almost the same for the SEAX method and for the
ZORA method with correction of the gauge dependency
error. The results of scalar calculations agree quite well
with the experimental results. The results of 2-compo-
nent SEAX calculations agree very well with those from
the 4-component relativistic DF calculations. The cal-
culated bond lengths and vibration frequencies are in
good agreement with experimental results, while there is
still larger error in the calculated bond energies for some
molecules which may be due to the error in the
calculated ground state energies of the constituent atoms
with open shells. In order to compare the performance
of the ZORA and SEAX methods for the properties
related to the inner shell electrons of heavy elements,
the ionization energy of 4f electrons for Au atoms is
calculated. The moment-restricted scheme and LDA are

Table 1. The orbital energies of the U atom obtained with different
methods (a.u.)

ZORAa IORAb SEAX Dirac-Slaterb

1s1/2 )4873.0 )4301.3 )4313.3 )4255.6
2s1/2 )818.97 )795.37 )795.95 )795.01
2p1/2 )789.88 )767.04 )767.74 )766.71
2p3/2 )642.00 )626.19 )626.59 )625.96
3s1/2 )202.63 )200.68 )200.74 )200.69
3p1/2 )189.63 )187.82 )187.89 )187.82
3p3/2 )156.71 )155.39 )155.43 )155.39
3d3/2 )136.15 )134.99 )135.04 )134.99
3d5/2 )129.47 )128.41 )128.41 )128.40
4s1/2 )51.246 )51.089 )51.095 )51.092
4p1/2 )45.427 )45.293 )45.303 )45.296
4p3/2 )36.924 )36.823 )36.832 )36.826
4d3/2 )27.664 )27.590 )27.595 )27.590
4d5/2 )26.099 )26.032 )26.033 )26.032
4f5/2 )13.913 )13.881 )13.879 )13.879
4f7/2 )13.505 )13.472 )13.469 )13.472
5s1/2 )11.333 )11.325 )11.327 )11.327
5p1/2 )9.0768 )9.0722 )9.0744 )9.0735
5p3/2 )7.0616 )7.0576 )7.0586 )7.0577
5d3/2 )3.7671 )3.7645 )3.7650 )3.7644
5d5/2 )3.4684 )3.4660 )3.4658 )3.4659
6s1/2 )1.7190 )1.7197 )1.7197 )1.7198
6p1/2 )1.0687 )1.0693 )1.0694 )1.0694
6p3/2 )0.7410 )0.7410 )0.7410 )0.7410
5f5/2 )0.1040 )0.1035 )0.1031 )0.1033
5f7/2 )0.0735 )0.0729 )0.0724 )0.0728
6d3/2 )0.0711 )0.0710 )0.0710 )0.0710
6d5/2 )0.0538 )0.0537 )0.0537 )0.0537
7s1/2 )0.1339 )0.1339 )0.1339 )0.1340

aRef. [13]
bRef. [19]

Table 2. The orbital energies of the Pu atom obtained with
different methods (a.u.)

ZORA IORA SEAX Dirac-Slater

1s1/2 )5175.0 )4537.8 )4552.1 )4485.8
2s1/2 )871.66 )845.11 )845.91 )844.83
2p1/2 )841.32 )815.60 )816.45 )815.25
2p3/2 )676.22 )658.76 )659.24 )658.51
3s1/2 )216.87 )214.65 )214.75 )214.69
3p1/2 )203.29 )201.23 )201.33 )201.24
3p3/2 )166.40 )164.91 )164.96 )164.92
3d3/2 )145.11 )143.81 )143.86 )143.80
3d5/2 )137.71 )136.52 )136.53 )136.52
4s1/2 )55.464 )55.279 )55.295 )55.293
4p1/2 )49.351 )49.192 )49.207 )49.200
4p3/2 )39.724 )39.609 )39.617 )39.610
4d3/2 )30.049 )29.962 )29.969 )29.963
4d5/2 )28.299 )28.214 )28.213 )28.212
4f5/2 )15.543 )15.502 )15.501 )15.502
4f7/2 )15.076 )15.037 )15.032 )15.036
5s1/2 )12.314 )12.306 )12.309 )12.310
5p1/2 )9.9039 )9.8986 )9.9014 )9.9011
5p3/2 )7.5618 )7.5569 )7.5583 )7.5573
5d3/2 )4.0470 )4.0442 )4.0449 )4.0441
5d5/2 )3.6992 )3.6966 )3.6965 )3.6964
6s1/2 )1.7595 )1.7605 )1.7610 )1.7613
6p1/2 )1.0681 )1.0689 )1.0692 )1.0693
6p3/2 )0.7048 )0.7050 )0.7052 )0.7050
5f5/2 )0.0556 )0.0550 )0.0548 )0.0549
5f7/2 )0.0188 )0.0183 )0.0178 )0.0187
6d3/2 )0.0329 )0.0361 )0.0362 )0.0361
6d5/2 )0.0223 )0.0223 )0.0223 )0.0223
7s1/2 )0.1223 )0.1224 )0.1224 )0.1224
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adopted in the calculations. The 4-component relativistic
DF calculations are also carried out with BDF program
under the same conditions. The results are listed in
Table 7. It can be seen that the result of SEAX
calculations is in better agreement with that from the
4-component relativistic DF calculations as compared
with the result obtained from the ZORA method.

Conclusion

A singularity excluded approximate expansion (SEAX)
scheme is proposed to expand the total energy in

relativistic density functional theory. The SEAX scheme
provides a transition between the Breit-Pauli and RA
expansions. The one-electron equation is derived varia-
tionally from the approximate total energy expression.
The Hamiltonian of the one-electron equation is bound-
ed from below; thus, the equation can be solved
variationally. Comparing to the ZORA (MP) method,
the gauge dependency error in ZORA method has been
more completely eliminated in the SEAX method. The
results of atomic calculations show that ZORA, IORA,
and SEAX methods give very similar energies for the
valence atomic orbitals, but the result by the SEAX
method is obviously better than that by the ZORA
method for the inner orbitals. For the deeper inner
orbitals the result by IORA method is slightly better
than that from the SEAX method, but compared with
the SEAX method, the total energy and the one-electron
equation is not connected variationally in the IORA
method, and more computational efforts are demanded
for solving the IORA equation because the metric matrix
and the kinetic matrix need calculating in each cycle
of iterations. The calculated orbital energies of U and

Table 5. The vibration frequencies of scalar relativistic DF calculations (cm)1)

Compounds Au2 Ag2 Cu2 AuH AgH CuH AuAg AuCu CuAg AuF AgF CuF AuCl AgCl CuCl AuBr AgBr CuBr

Expt. 191 192 265 2305 1760 1941 196 250 232 560 513 623 383 343 415 – 248 315
SEAX GGA 168 178 265 2262 1810 2009 178 238 221 540 482 615 358 315 393 241 230 303
ZORA GGA 167 178 265 2265 1811 2007 179 239 222 541 482 616 358 315 393 241 229 303
ZORA GGAa,b 174 183 272 2290 1810 2010 185 245 229 526 482 624 353 324 418 244 – –
SEAX LDA 194 200 291 2325 1882 2047 202 261 246 588 543 671 391 350 428 268 252 329
ZORA LDA 192 198 291 2325 1889 2045 202 261 247 588 543 673 392 350 428 267 252 329
ZORA LDAa 193 206 298 2340 1890 2070 209 269 255

a Ref. [14] for compounds Au2–CuAg
b Refs. [24, 40] for compounds AuF–CuBr

Table 6. The result from
2-component SEAX calculations
and 4-component relativistic
DF calculations

Compounds Au2 AuCl Bi2 PbO TlF PbTe TlCl

re(Å)
Expt. 2.472 – 2.661 1.922 2.084 2.595 2.485
SEAX LDA 2.464 2.190 2.664 1.916 2.067 2.602 2.467
ZORA LDA 2.465 2.191 2.664 1.916 2.068 2.603 2.468
BDF LDA 2.463 2.188 2.645 1.915 2.067 2.602 2.465
SEAX GGA 2.522 2.241 2.691 1.944 2.113 2.649 2.530
ZORA GGA 2.523 2.241 2.692 1.944 2.113 2.649 2.530
BDF GGA 2.519 2.238 2.691 1.944 2.111 2.647 2.528

De(eV)
Expt. 2.31 3.5 2.03 3.87 4.60 2.57 3.83
SEAX LDA 2.95 3.63 3.00 5.30 5.45 3.16 4.31
ZORA LDA 2.95 3.62 3.01 5.30 5.46 3.16 4.31
BDF LDA 2.96 3.64 3.01 5.30 5.46 3.16 4.32
SEAX GGA 2.29 3.00 2.43 4.66 4.98 2.58 3.89
ZORA GGA 2.29 3.00 2.43 4.66 4.98 2.58 3.89
BDF GGA 2.30 3.01 2.43 4.66 4.98 2.58 3.89

x(cm)1)
Expt. 191 383 173 721 477 212 284
SEAX LDA 199 409 180 – 491 210 307
ZORA LDA 199 409 179 758 492 211 307
BDF LDA 200 409 181 749 506 218 310
SEAX GGA 176 373 174 – 464 200 276
ZORA GGA 176 374 172 718 464 200 277
BDF GGA 178 370 175 717 461 194 268

Table 7. Ionization energies of the 4f electrons of Au atoms (eV)

No. of ionized
electrons

ZORA SEAX BDF

1 95.41 95.21 95.22
2 220.58 220.16 220.11
3 378.63 377.94 377.77
4 572.31 571.34 570.95
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Pu by the SEAX method agree quite well with those
obtained by solving the 4-component Dirac-Slater
equation except for the 1s orbital. The calculations for
a series of molecules show that for the molecular
properties determined by valence electrons, the results
of SEAX calculations are in good agreement with those
from ZORA calculations with correction of the gauge
dependency error, but for the properties related to the
inner shells of heavy elements, the result given by the
SEAX method is in better agreement with that by 4-
component relativistic DF calculations as compared
with the result from the ZORA method. The calculated
results obtained by the two-component SEAX calcula-
tions agree very well with those from the 4-component
relativistic DF calculations, while the computational
efforts in the former method are much less than those in
the latter.

Acknowledgements. This work has been supported by the National
Natural Science Foundation of China (Project Nos. 29892163,
29928002), for which the authors gratefully acknowledge the
NNSFC. The authors would like to thank the Computation
Institute of Chinese Academy of Sciences for providing the
computational resources. F. Wang thanks Dr. Wenjian Liu for
helpful discussions.

References

1. Balasubramniam K (1997) Relativistic effects in chemistry.
Wiley, New York

2. Collins CL, Dyall KG, Schaefer III HF (1995) J Chem Phys
102: 2024

3. Visscher L, Saue T, Nieuwpoort WC, Faegri K, Crope O (1993)
J Chem Phys 99: 6704

4. Visscher L, Lee TJ, Dyall KG (1996) J Chem Phys 105: 8769
5. de Jorg WA, Nieuwpoort WC (1996) Int J Quantum Chem 58:

203
6. Liu W, Hong G, Dai D, Li L, Dolg M (1997) Theor Chem Acc

96: 75
7. Kahn L, Baybutt P, Truhlar DG (1976) J Chem Phys 65: 3826
8. Dolg M, Stoll H (1996) In: Gschneider KA Jr, Eyring L (eds)

Handbook on the physics and chemistry of rare earths, vol 22.
Elsevier, Amsterdam, chap 152, p 607

9. Douglas M, Kroll NM (1974) Ann Phys (NY) 82: 89
10. Hess BA (1985) Phys Rev A32: 756; (1986) Phys Rev A33: 3742
11. Franke R, Kutzelnigg W (1992) Chem Phys Lett 199: 561
12. Chang Ch, Pelissier M, Duran Ph (1986) Phys Scr 34: 394
13. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:

4597
14. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys

101: 9783
15. Dyall KG (1997) J Chem Phys 106: 9618; (1998) J Chem Phys

109: 4201
16. Dyall KG, Enevaldsen T (1999) J Chem Phys 111: 10000
17. Nakajima T, Hirao K (1999) Chem Phys Lett 302: 383
18. Nakajima T, Suzumura T, Hirao K (1999) Chem Phys Lett 304:

271
19. Dyall KG, van Lenthe E (1999) J Chem Phys 111: 1366
20. van Leeuwen R, van Lenthe E, Baerends EJ, Snijders JG (1994)

J Chem Phys 101: 1272
21. van Lenthe E, van Leeuwen R, Baerends EJ, Snijders JG (1996)

Int J Quantum Chem 57: 281
22. van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys

105: 6505
23. Philipsen PHT, van Lenthe E, Snijders JG, Baerends EJ (1997)

Phys Rev B56: 13556
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